NOISE IMPACT ANALYSIS QUEEN OF ANGELS CHURCH (MUP 83-054W) ALPINE, CALIFORNIA MUP# P83-054W Prepared by: Hans D. Giroux **Acoustical Consultant** cc: Hyndman & Hyndman Architects Attn: Dennis Hyndman 2611 South Coast Highway, Suite 200 Cardiff, California 92007 Project No.: P02-079 Prepared for: Diocese of San Diego Attn: Construction Services P.O. Box 85728 San Diego, California 92186-5278 Date: December 9, 2004 # NOISE IMPACT SOURCES Two noise sources are typically identified with a development such as the proposed church expansion. Construction activities, especially heavy equipment, will create short-term noise increases near the project site during construction. Upon completion, vehicular traffic on streets around the development area may create a higher noise exposure to Alpine area residents beyond the noise levels currently experienced. Since traffic-related noise/land use standards are based upon a weighted 24-hour average exposure, and since church traffic occurs mainly during less noise-sensitive hours with low (Sunday) baseline traffic volumes, the project's traffic noise impact on its environment will likely be minimal. However, because churches are noise sensitive, siting such uses requires careful consideration of their exterior and interior noise exposure. In developed areas, the impact of the ambient noise environment on the project due to roadway proximity, rather than of the project on off-site uses, is sometimes a greater noise impact analysis concern. Because of low traffic volumes on West Victoria Drive, and with the absence of any nearby freeway, airport or noisy heavy industry, ambient noise levels are currently low, and will remain so into the future. Ambient noise is not a constraint to proposed site development. In addition to the issue of site suitability for proposed noise-sensitive uses, the project will generate noise that may affect off-site uses on A-70 (noise sensitive) uses. Project noise generation will include on-site traffic, the use of church bells, chimes or other signaling/call to worship devices, and the operation of mechanical equipment (air conditioners) at the three new buildings. Whereas site suitability is determined by the ambient noise environment acting upon the site (General Plan standards), on-site noise generation is regulated by the San Diego County Noise Ordinance. The ordinance does, however, take into account the existing non-project noise environment. If background noise is already elevated, on-site noise generation is held to a less stringent standard than within a pristine acoustic environment. # Noise Standards Most community noise problems typically derive from transportation sources under the regulatory control of other agencies (Highway Patrol, FAA, etc.). Vehicular traffic, rail, or aircraft noise control is preempted by other agencies. Local control is affected by land use decisions that define acceptable noise exposure as a function of land use sensitivity. Acceptability is stated in the Noise Element of the San Diego County General Plan. The Noise Element, by State law, uses a noise parameter called the Community Noise Equivalent Level (CNEL). CNEL is a weighted 24-hour exposure where noise events during the evening, and especially at night, are assigned an artificial penalty during times of greater noise sensitivity. CNEL is calculated by averaging the noise levels from 7:00 a.m. to 7:00 p.m., plus levels from 7:00 p.m. to 10:00 p.m. increased by +5 dB, and levels from 10:00 p.m. to 7:00 a.m. increased by +10 dB. The noise "penalties" for hours of greater noise sensitivity are equivalent to counting each evening noise event (vehicles, etc.) as three events, and each nocturnal noise generator as ten noise-equivalent sources. The State of California has developed model noise exposure levels based on the CNEL descriptor that are proposed for local adoption. These model standards contain multiple c ategories of acceptability and category overlaps. They also do not a ddress A-VOLITIEN DOC 1 interior standards required under Titles 24/25 of the California Code of Regulations. San Diego County, in the noise element of the general plan, therefore condensed this matrix of noise exposure goals into a much simpler format. Policy 4b of the General Plan is designed to protect proposed land uses from adverse noise exposure. Whenever possible, development of noise sensitive areas (NSAs) should not exceed 55 dB(A) CNEL. If noise levels are predicted to exceed 60 dB(A) CNEL, a noise study is required. This study must document the mitigation to be employed to achieve a 60 dB(A) CNEL exterior noise exposure. Attaining an exterior 60 dB(A) CNEL generally allows the interior standard of 45 dB(A) CNEL to be met without substantially enhanced structural mitigation. For NSAs occupied less than 24 hours (schools, libraries, etc.), the interior standard is 50 dB CNEL. On-site noise generation occurring on one land use that may affect an adjacent use is governed by the San Diego County Code of Regulatory Ordinances (Section 36.401 et seq.). For the proposed activities, there are few activities to which ordinance limits would apply. On-site noise generation that might be regulated by ordinance would include limits on operation of mechanical equipment (HVAC), or on the allowable hours for trash collection, parking lot sweeping or construction activities. Contemplative gardens would be considered a passive park use, and would also be regulated by ordinance. Churches typically do not have noise-related conflicts with adjacent communities amendable to ordinance enforcement. In rare cases, religious observances that involve bells or other call-to-worship devices, or amplified or otherwise loud music, may be a source of conflict with their neighbors. Such conflict is more the exception rather than the rule. The amount of noise that activities on one land use may create at an adjoining use is regulated by Section 36.404 of the County Ordinance. The proposed project and surrounding uses generally have A-70 zoning. A-70 is provided the highest degree of noise protection. The allowable noise exposure at any A-70/A-70 interface is as follows: 7:00 a.m. to 10:00 p.m. 50 dB(A) LEQ (1-Hour) 10:00 p.m. to 7:00 a.m. 45 dB(A) LEQ (1-Hour) These standards, however, are modified if the existing ambient environment already exceeds these thresholds. When background noise levels exceed the daytime or nocturnal criteria, those compliance levels are adjusted upward to equal the background level. # **BASELINE NOISE LEVELS** Noise measurements were made at three locations on the project perimeter. The purpose of these measurements was to verify the suitability of the site for proposed noise-sensitive land uses,, and to determine whether any relaxation of the County Noise Ordinance standard is appropriate based upon existing background noise conditions. Table 1 summarizes the results of the on-site noise readings made for 48+ hours at three locations as follows: Site 1 = South property line near sanctuary/devotional garden. Table 1 On-Site Noise Measurement Summary | | | 6/4/02 | | | 6/5/02 | | | 6/6/02 | | |----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Time | Site 1 | Site 2 | Site 3 | Site 1 | Site 2 | Site 3 | Site 1 | Site 2 | Site 3 | | 00-01 | - | _ | - | 41 | 43 | 40 | 40 | 43 | 39 | | 01-02 | _ | _ | - | 39 | 42 | 39 | 39 | 41 | 38 | | 02-03 | - | _ | - | 39 | 42 | 39 | 36 | 40 | 37 | | 03-04 | - | _ | - | 39 | 42 | 39 | 37 | 41 | 38 | | 04-05 | _ | - | - | 43 | 45 | 43 | 39 | 42 | 41 | | 05-06 | - | - | _ | 48 | 48 | 47 | 42 | 46 | 45 | | 06-07 | _ | - | _ | 48 | 50 | 48 | 47 | 46 | 43 | | 07-08 | - | - | - | 42 | 46 | 43 | 44 | 45 | 43 | | 08-09 | _ | _ | - | 38 | 43 | 41 | 41 | 44 | 39 | | 09-10 | - | _ | - | 38 | 43 | 40 | 37 | 42 | 40 | | 10-11 | _ | - | _ | 37 | 42 | 40 | 40 | 45 | 40 | | 11-12 | - | - | _ | 40 | 45 | 40 | 42 | 47 | 43 | | 12-13 | - | _ | - | 39 | 45 | 44 | 37 | 43 | 38 | | 13-14 | - | - | - | 50 | 54 | 52 | 37 | 44 | 37 | | 14-15 | - | - | - | 47 | 51 | 48 | 40 | 45 | 42 | | 15-16 | _ | - | _ | 48 | 53 | 50 | 47 | 52 | 48 | | 16-17 | - | - | - | 43 | 49 | 46 | 48 | 50 | 45 | | 17-18 | 48 | 51 | 48 | 41 | 47 | 46 | 46 | 51 | 46 | | 18-19 | 53 | 58 | 53 | 49 | 54 | 50 | 46 | 48 | 45 | | 19-20 | 53 | 55 | 53 | 47 | 51 | 48 | 46 | 50 | 48 | | 20-21 | 42 | 45 | 40 | 44 | 46 | 42 | 45 | 46 | 44 | | 21-22 | 46 | 46 | 43 | 45 | 47 | 44 | 47 | 47 | 44 | | 22-23 | 50 | 51 | 48 | 45 | 48 | 45 | 46 | 46 | 44 | | 23-24 | 42 | 44 | 40 | 54 | 58 | 54 | - | - | - | | 24-Hr.
CNEL | | | | 53 | 56 | 54 | 50 | 52 | 49 | 3 Site 2 = South property line near new administrative and new fellowship hall. Site 3 = North property line near existing Hale Drive residence. The San Diego County siting standard for noise-sensitive land uses is 60 dBA CNEL. The measured CNEL ranged from 49-56 dBA. The June 5 readings were measurably higher than on June 6, 2002. This was due to several loud hours that were likely not part of the "normal" noise environment. The existing background CNEL appears to be closer to 50 dBA at each of the identified noise-sensitive, on-site uses. One-hour noise levels as low a 37 dBA LEQ were observed during these measurements. The County daytime noise ordinance standard is 50 dBA LEQ. Some background noise levels did exceed the County limit, but the compliance standard would be relaxed if the majority of background hours exceeded the applicable standard. Since the noise at the project perimeter is predominantly quiet, the allowable A-70 property line noise standard of 50 dBA LEQ (daytime) would apply. Since there are few no on-site activities from 10:00 p.m. to 7:00 a.m., the nocturnal standard was only secondarily considered. # NOISE IMPACTS There are two potential noise issues associated with the proposed project. If the proposed expansion were to create noise levels that exceed the allowable San Diego County
Noise Ordinance thresholds on any adjacent A-70 zoning, then mitigation would need to be applied to the noise sources to reduce them to within allowable levels. Similarly, if noise-sensitive uses were to be proposed on-site that would be exposed to ambient noise levels exceeding General Plan standards for noise-sensitive areas (NSAs), mitigation would similarly be required before the project could be approved. # On-Site Noise Exposure On-site noise measurements had demonstrated that existing noise levels were very low. The project site is distant from any major roadway noise sources. Traffic levels on adjacent Victoria Drive are very low (currently 1,000 ADT). There are no airports in the Alpine area generating any substantial air traffic. Noise-sensitive exterior areas of the project site have existing noise levels near 50 dBA CNEL. It would require a ten-fold increase in traffic volumes to increase ambient noise to the 60 dBA County Policy 4b standard. There are no ten-fold traffic volume increases predicted in the project vicinity. Noise-sensitive areas for the project site include a gathering plaza, social patio and devotional garden. These uses are 400 feet or more from West Victoria Drive, and will be additionally partially screened by the social hall ("New Hall" building structure. Ambient noise exposure at any NSAs will therefore remain well below the acceptable maximum of 60 dBA CNEL. Any potential noise issues would center exclusively on project noise impacts at any adjacent property line rather than from any acoustic environment impact upon proposed on-site uses. The project description identifies childcare as an on-site function. There are no proposed childcare services except for an indoor toddler and infant play area in the parish hall to be used during services by children too young to participate in the mass. This activity involves no outdoor play. Indoor "babysitting" services during mass are not noise generators in that no exterior play will occur. They are similarly not considered a noise sensitive interior use since no instructional or sleeping and napping activities are part of this activity. The site may use electric bells or chimes for call-to-worship purposes between 9:00 a.m. to sunset. Under the existing major use permit, these sounds are not required to comply with the County Noise Ordinance. However, because the noise ordinance limit is an hourly average, while bells or chimes are typically only briefly sounded, they would not be expected to exceed standards even though they are specifically exempt. On-site noise exposure was further evaluated using the SOUND32 Computer Model to estimate peak hour noise levels. The model was initially run for no terrain and no structural interference with acoustically "hard" conditions. If the worst-case input assumptions produced no adverse noise exposure, incorporation of more complex terrain and various structures would simply create a greater level of safety. Build-out traffic of 3,700 ADT on West Victoria Drive (370 ADT peak hour) was used to model future traffic noise levels. The one-hour LEQ calculation used the following input parameters: Auto 362° Speed = 50mph Medium Truck 4° Heavy Truck 4° ° = mix of 98%/1%/1% (Alpine Christian Fellowship Study) The resulting noise levels were as follows if the 24-hour CNEL is presumed to be (LEQ + 2 dB): | Land Use | LEQ(1) | CNEL | |------------------------|--------|------| | New Admin Bldg. | 57 | 59 | | New Hall | 56 | 58 | | New Church | 53 | 55 | | Gathering Plaza | 54 | 56 | | Soc. Patio/Dev. Garden | 53 | 55 | | Off-Site Residence | 58 | 60 | Source: SOUND32 Model, Input/Output in Appendix. The front of the adjacent home will have a future noise exposure that equals the San Diego County standard. All other noise exposures will be within siting standards for even the most over-predictive input assumptions. # **PROJECT NOISE GENERATION** Project-related noise may be due to the traffic it generates within the site itself, from on-site activities (public assembly, call-to-worship, outdoor music, etc.), or from mechanical equipment (heating, a/c, etc.). While churches are generally considered an NSA, they may also be noise generators. The project may also generate temporary noise during construction. A-IQUUEN.DOC 6 # TRAFFIC NOISE Project-related traffic may create perceptible noise increases along project area roadways, and at off-site residences near the project site. Off-site (on-street) impacts are governed by the County General Plan Policy using the 24-hour weighted CNEL metric. On-site traffic noise generation from parking or from drop-off traffic is regulated by the noise ordinance. On-street traffic noise from site traffic will be superimposed upon the baseline (no-project) traffic. The noise increment attributable to the project is calculated as follows: Noise = $$10 \times (\log [(BASE + PROJ)/BASE])$$ Where BASE is the baseline ADT of 3,700 PROJ is the project ADT of 590 max, 145 avg. The noise increments for average daily and peak attendance are as follows: NOISE (MAX) = $$10 \text{ X} (\log [3845/3700]) = +0.2 \text{ dB}$$ NOISE (AVG) = $$10 \text{ X} (\log [4290/3700]) = +0.6 \text{ dB}$$ Changes of less than +1.5 dB are generally undetectable even under laboratory conditions. Off-site traffic noise impacts are less-than-significant. The distance from the nearest off-site residence to the project driveways is around 215 feet from the West Victoria entry. The hourly noise increment will depend upon the number of vehicles on these drives under an assumed direct line of sight relationship. At 15 mph, the vehicle noise per various cars per-hour on the driveway is approximately as follows at 215 feet (dB(A) LEQ)¹: | | 1 Car/hr | 100 cars/hr | 200 Cars/hr | |----------|----------|-------------|-------------| | 50 feet | 26.1 | 46.1 | 49.1 | | 215 feet | 19.8 | 39.8 | 42.8 | The County noise standard is 50 dB(A) LEQ by day, and 45 dB(A) LEQ after 10:00 p.m. Daytime traffic will be 200 cars per hour or less using the West Victoria Drive access. The daytime noise standard will be met by. Even if an evening event occurred after 10:00 p.m. involving hundreds of arriving or departing attendees, the 45 dB nocturnal standard would not be threatened by several hundred users of accessing or departing via the site entrance. Site access/egress traffic noise is not considered a noise impact issue. Post-10:00 p.m. departures would also generate on-site noise within the parking lot from alarm "chips," door slams, and engine startups. The off-site noise level from such activities is not ¹ LEVEL (1 Car) = $10 \times \log (15^{**}4.174 \times 10^{**} 0.115 + 10^{**} 5.013) - 27.1$ Source: Caltrans TENS, P. N-132 (1998). easily established because one car may shield an adjacent car, physical interference from buildings and grade separation may modify line-of-sight assumptions, and parking behavior itself will affect noise levels. A small attendance even would have vehicles parked near the door of the venue. A major event would have cars distributed throughout the lot. Noise measurements from cars leaving a parking lot were recently (July 2002) reported by Mestre-Greve Associates in a parking structure noise study (MGA Report #02-139.A). The measured maximum noise level at 50 feet from a vehicle was 60-70 dB for door slams, and 60-70 dB for startups under direct line-of sight (isolated vehicle) conditions. Vehicle idle noise was around 55 dB. The measurement includes multiple echoes from a concrete structure. For a parking lot with intervening cars and without echo effects, the lower end of each measurement range was assumed most representative of the project site. A noise reference level for parking lot departures was calculated by assuming a 1-second pulse for door slams, a 3-second starter cranking period, and 10 seconds of vehicle idle to drive-off. The reference vehicle noise per individual vehicle is calculated as follows: = $$10x \log [(1 \times 10^{6.0} + 3 \times 10^{6.0} + 10 \times 10^{5.5})/3600]$$ = 33 dBA Leq per vehicle The reference noise level will increase with numbers of vehicles in the lot, and decrease with distance beyond 50 feet from the "centroid" of parked cars. The average distance from the center of the parking field to the nearest homes is 250 feet. The off-site noise exposure as a function of post-10:00 p.m. departures is calculated as follows: | No. of Departures/hour | Leq at 250 feet (dBA) | |------------------------|-----------------------| | 10 | 29 | | 20 | 32 | | 50 | 36 | | 100 | 39 | | 200 | 42 | | 228 | 43 | The nocturnal standard of 45 dBA Leq will not be exceeded at the nearest residence due to parking lot activities even if every parking space is filled and vacated within 1 hour. Combined noise levels from the entire parking lots (228 cars) emptying during 1 hour after 10:00 p.m. could slightly exceed the County noise standard as follows: Combined = $$10 \times \log (10^{4.34} [driveway] + 10^{4.26} [in-lot])$$ = 46 dBA Leq If any vehicles left before 10:00 p.m., or any vehicles remained after the completion of the event for cleanup or other activities, the maximum activity level would be slightly reduced. The maximum plausible lot "turnover" rate in any hour after 10:00 p.m. is 200 vehicles. The combined noise from 200 stationary departure preparation and subsequently moving vehicles I 45 dBA Leq at the nearest residence. This does not exceed the County noise ordinance standard. A church parking lot noise study was conducted for the Skyline Wesleyan project in the Rancho San Diego area of San Diego County. This study used a "flat lot" noise measurement of a 312-car church lot departure, including start-up and drive-off noise. The reported noise level (Skyline Wesleyan Church Noise Study, 1995) was 49 dBA Leq at 200 feet from the center of the parking activity. If these data are adjusted for 200 cars per hour at 250 feet from the center of the lot, the
predicted noise level is as follows: | Measured (312 cars, 200 feet) | 49.0 dBA | |-------------------------------|--------------| | 200 vs. 312 cars | 1.9 dBA | | 250 vs. 200 feet | 1.9 dBA | | Residual | 45.2 dBA Leq | The adjusted measurements and the calculated value based on door slams and startups produce an almost exact match in predicted off-site noise levels. Post-10:00 p.m. departure from a major service or other church function will not cause the nocturnal County noise standard to be exceeded near any off-site residences. 9 # **ON-SITE EQUIPMENT NOISE** On-site noise will derive mainly from mechanical (heating, ventilation, air/conditioning, or HVAC) equipment was obtained from manufacturer's specifications. Because of a variety of suppliers, the sound ratings are stated as both sound power levels, as well as sound pressure levels (in "bels" or "decibels"). Air conditioning unit sound data was presumed to be reported consistent with Air Conditioning and Refrigeration Institute (ARI) standards for the given type of unit. Exhaust fan noise expressed in terms of sound power level was assumed functionally equivalent to standard ARI sound rating protocols. A matrix of outdoor equipment was developed for each of three source locations, and the equipment was assigned to the roof or a ground level source location. The roof-mounted equipment will be shielded from the nearest property line by the roof parapet. On-site structures particularly the sanctuary, will shield some off-site residences from a direct line-of-sight to a portion of the equipment. The outdoor equipment that may create a perceptible noise level at the property line includes: #### SANCTUARY BUILDING | Equipment | No. | Location | ARI Rating | |-----------|-----|----------|------------| | 38QRC024 | 1 | Ground | 68 | | 38HO34 | 2 | Roof | 95 ea. | | 50HJQ005 | 1 | Roof | 76 | | 50HJQ006 | 1 | Roof | 80 | ### ADMIN. BUILDING | Equipment | No. | Location | ARI Rating | |-----------|-----|----------|------------| | 38QRC024 | 2 | Ground | 68 ea. | | 38QRC036 | 1 | Ground | 68 | | 38QRC048 | 2 | Ground | 76 ea. | #### HALL BUILDING | Equipment | No. | Location | ARI Rating | |--------------|-----|----------|------------| | 50HS024 | 1 | Roof | 80 | | 50НЈQ004 | 1 | Roof | 76 | | 50HJQ005 | 5 | Roof | 76 ea. | | 50HJQ008 | 1 | Roof | 82 | | RPB Hood Fan | 1 | Roof | 76 | | VCR245-HP | 1 | Roof | 84 | Source: Manufacturer noise specifications in appendix. Off-site noise levels due to mechanical equipment operations were calculated at the patios of the nearest residences to various project HVAC noise sources. Calculations were also performed at the closest residential property lines, at locations with the clearest lines-of-sight to on-site sources. Six unique sources were identified as possibly impacting residences to the north, east, south and southeast of the project site. The source strength for every unit running at full power is as follows: Noise Source Strength Assignment (combined sound rating in decibels) | No. | Location | Source
Strengths | Total | |-----|---------------------|---------------------|-------| | 1 | Sanctuary Roof East | 80, 95 | 95 | | 2 | Sanctuary Roof West | 76, 95 | 95 | | 3 | Sanctuary Ground | 68 | 68 | | 4 | Hall Roof Well | 6x76, 80, 82, 84 | 89 | | 5 | Hall Subroof | 76 | 76 | | 6 | Admin. Ground | 3x68, 2x76 | 80 | Four receiver locations were evaluated at the nearest outdoor area facing the church property ("patio"), and at the common property line with the project site. Those receivers paths with a direct line-of-sight to the source, or with only one intervening parapet or equipment well barrier, were evaluated in terms of any extra structural attenuation created by the interruption in the line-of-sight. For multiple barriers, or with an entire building shielding the line-of-sight, an average structural attenuation of 15 dB was assumed because straight-line propagation models do not readily incorporate multiple-barrier configurations. Figure 1 shows the propagation paths analyzed. Solid lines were explicitly analyzed in terms of direct views of source-receiver path length differences. Dotted lines were estimated because they were fully shielded by buildings or had multiple intervening barriers. Noise propagation was assumed to be via spherical spreading, and any "extra" attenuation due to barrier effects was calculated using the direct and indirect path length difference for an assumed 550 Hz-centered mechanical equipment noise. As a worst-case initial approximation, every piece of equipment was operating at 100 percent maximum power for an hour. The resulting worst-case property line and patio noise exposures are shown in Table 2. Table 2 Off-Site Mechanical Equipment Noise | | Source Contribution (dBA)* | | | | | | | |-----------------|----------------------------|----|----|----|----|----|-------| | | 1 | 2 | 3 | 4 | 5 | 6 | Total | | South House | | | | | | | | | Patio | 34 | 33 | 11 | 23 | 16 | 29 | 37 | | Property Line | 36 | 34 | 12 | 24 | 17 | 30 | 39 | | Southwest House | | | | | | | | | Patio | 35 | 29 | 9 | 27 | 17 | 43 | 44 | | Property Line | 36 | 29 | 10 | 28 | 18 | 45 | 46 | | East House | | | | | | | | | Patio | 36 | 30 | 4 | 22 | 9 | 13 | 37 | | Property Line | 38 | 33 | 6 | 22 | 11 | 13 | 39 | | North House | , | | | | - | | | | Patio | 40 | 38 | 1 | 29 | 19 | 13 | 42 | | Property Line | 46 | 42 | 5 | 30 | 19 | 14 | 48 | ^{*}Source 1 = East Sanctuary Wing Source 2 = West Sanctuary Wing Source 3 = Sanctuary Ground Source 4 = Hall Roof Well Source 5 = Hall Subroof Source 6 = Admin. Bldg. No receivers would exceed the daytime noise ordinance standard even if every HVAC unit operated continuously for 1 hour. The nocturnal standard could be exceeded at the northern property line if the sanctuary air conditioning units ran for a solid hour from 10:00 p.m. to 7:00 p.m. The nocturnal standard could be exceeded at the southwest property line if all Administration Building HVAC units ran for one hour between 10:00 p.m. and 7:00 a.m. A total of 3 dB of nocturnal attenuation would need to be created to maintain equipment noise within County limits for special nocturnal sanctuary events. A 1 dB attenuation would be needed for the Administration Building units if they all ran at night for a solid hour. The recommended mitigation is as follows: #### SANCTUARY BUILDING Erect a screen wall that interrupts the line-of-sight between the 38 H034 units on the sanctuary roof and the northern property line that achieves an additional 3 dB of attenuation for northward noise propagation from these units. The screen wall was assumed to be located within 3 feet of the HVAC unit, and the top of the wall was assumed to be 1 foot taller than the roof parapet (top of screen wall = 2,105 feet mean sea level (msl)). By placing the wall closer to the units and slightly higher than the parapet as shown in Figure 2, the "noise shadow" is substantially deepened. The modified calculation for the northern property line, assuming use of a screening wall with a transmission loss of 27 dB or higher (20-gauge sheet metal, 1/8-inch fiberglass reinforced plastic, ½-inch glass or acrylic sheet, or similarly weighted/stiffness material), is as follows: Source Height = 2,101 feet Barrier Height = 2,105 feet Receiver Height = 2,114 feet Distance to Barrier = 5 feet Distance to P.L.: > East unit = 140 feet West unit = 210 feet | Parameter | East Unit | West Unit | |--|--------------------------|--------------------------| | Direct Path | 140.60 feet | 210.40 feet | | Indirect Path
to Barrier
to Receiver | 6.40 feet
135.30 feet | 6.40 feet
205.20 feet | | Fresnel No. | 1.08 | 1.17 | | Noise Reduction | 13 dB | 14 dB | The property line noise with full operation of all sanctuary HVAC units after 10:00 p.m. is as follows: | Source | Contribution (dBA) | |---------------------|--------------------| | East Sanctuary Wing | 41 | | West Sanctuary Wing | 37 | | Sanctuary Ground | 5 | | Hall Roof Well | 30* | | Hall Subroof | 19* | | Admin. Bldg. | 14* | | TOTAL | 43 dBA Leq | ^{*}Not likely running from 10:00 p.m. to 7:00 a.m. Hourly operation of all sanctuary HVAC units will not cause noise levels to exceed County nocturnal noise standards at the nearest property line if the screen wall is installed as shown in Figure 2. # **ADMINISTRATION BUILDING** The potential "excess" 1 dB at the southwest property line is due almost exclusively to the ground floor units at the Administration Building. The contribution from the various HVAC sources at this location is as follows: | Ground Floor Administration Bldg. | 45 dBA Leq | |-----------------------------------|------------| | All other sources | 37 dBA Leq | | Total | 46 dBA Leq | Any measurable noise reduction from the Administration Building units would meet County post-10:00 p.m. standards with a large margin of safety since the degree of excess is small and derives from one unique set of sources. Any break in the line-of-sight between the mechanical equipment and the receiver will create a minimum of 5 dB of reduction. The receiver height is 2,082 feet. A masonry wall that breaks the line-of-sight from the source to the receiver with a top of wall elevation of 2,082 feet would produce more than adequate noise attenuation. The wall location needed to meet the noise standard is shown in Figure 3. A 4-foot upward extension of the retaining wall will allow 24-hour per day operation of all on-site HVAC units without violation of any San Diego noise standards. # INTERIM PROJECT CONFIGURATION The proposed project includes a possible interim development using modular buildings while the membership grows and permanent facilities are constructed. Noise generation and resulting off-site exposure from the interim use (traffic, etc.) will generally be less than from the build-out facility. The interim campus will, however, have an array of wall-mounted air
conditioners at the end of each modular building. A total of 14 modular buildings and associated HVAC systems may be deployed for the interim site plan. The interim layout could have both the hall and administration buildings as interim structures, or one or the other. The possible permutations of permanent and interim structures is as follows: | | Scenario | | | | |----------------------|----------|---|---|--| | Structure | A | В | C | | | Sanctuary | Р | P | Р | | | Fellowship Hall | I | P | I | | | Administration Bldg. | I | I | Р | | P=permanent building I=interim (modular) structure Noise data for the Bard Wall-Mount Air Conditioners was obtained from the manufacturer. There is a slight increase in noise levels with increasing cooling load. The reference sound pressure level at 50 feet from the unit as a function of capacity is as follows is shown on the data sheets in the appendix: | Up to 2 ton | 45 dB | |--------------|-------| | 2.5 to 3 ton | 48 dB | | 3.5 ton | 49 dB | | 4 to 5 ton | 50 dB | The distribution of capacity among the candidate units is not known. As a realistic worst-case, all units, except the seven units at the interim fellowship hall were assumed to be 3.0 tons, and every unit was assumed to run continuously for one hour. The seven fellowship hall units were assumed to be 2.0 ton units. The noise exposure for the interim configuration was calculated at the same analysis locations as for the permanent configuration. If the modular building completely obstructs the line-of-sight between the HVAC units and the patio of the nearest homes, their contribution to the noise exposure was assumed reduced by 15 dB by virtue of the 10-foot or so "sound wall" created by the modular unit. Because the wall-mounted air conditions at the interim administration facility may be close to the nearest home, they were assumed located on the walls farthest from the closest homes. A reference noise level of 48 dBA at 50 feet was assigned to each assumed 3.0 ton unit. A reference noise level of 45 dB per unit was assigned to the interim fellowship hall HVAC system. The receiver pathway was measured, and any structural interference was estimated. Four source areas were considered as follows: | No. | Location | Reference Level (dBA) | |---------|---------------------------------|-----------------------| | 7 units | Interim fellowship hall | $45 + 10 \log 7 = 53$ | | 2 units | Portable classrooms – north | $48 + 10 \log 2 = 51$ | | 2 units | Portable classrooms – south | $48 + 10 \log 2 = 51$ | | 3 units | Interim administration building | $48 + 10 \log 3 = 53$ | The worst-case noise exposure from the interim campus was calculated for the same receiver locations as for the permanent site layout for each of three alternative configurations. The source-receiver distances and any structural interference are included in the appendix. The resulting noise levels for each alternative are given in Tables 3 to 5. Daytime standards would be met with a large margin of safety. The more stringent nocturnal standard could be equal, but not exceeded at the "northern" property line (but not at the nearest patios) if every unit ran non-stop for one hour between 10:00 p.m. to 7:00 a.m. Table 3 Interim Project (A) Off-Site Mechanical Equipment Noise² | | Source Contribution (dBA) ¹ | | | | | | | | |-----------------|--|----|----|----|----|----|----|-------| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total | | South House | | | | | | | | | | Patio | 34 | 33 | 11 | 24 | 21 | 41 | 32 | 43 | | Property Line | 36 | 34 | 12 | 25 | 21 | 43 | 34 | 45 | | Southwest House | | | | | | | | | | Patio | 35 | 29 | 9 | 19 | 34 | 18 | 33 | 40 | | Property Line | 36 | 29 | 10 | 21 | 37 | 20 | 35 | 41 | | East House | | | | | | | | | | Patio | 36 | 30 | 4 | 16 | 16 | 14 | 15 | 37 | | Property Line | 38 | 33 | 6 | 17 | 18 | 16 | 16 | 39 | | North House | | | | | | | | | | Patio | 35 | 33 | 1 | 34 | 35 | 15 | 16 | 40 | | Property Line | 41 | 37 | 5 | 40 | 39 | 20 | 20 | 45 | ¹Source 1 = East Sanctuary Wing Interim Project (A)=New sanctuary, modular hall, modular administration. Source 2 = West Sanctuary Wing Source 3 = Sanctuary Ground Source 4 = Large temporary hall Source 5 = Portables 1 Source 6 = Portables 2 Source 7 = Modular adminstration ²With screens on sanctuary roof. Table 4 Interim Project (B) Off-Site Mechanical Equipment Noise² | | Source Contribution (dBA)* | | | | | | | |-----------------|----------------------------|----|-----|----|----|----|-------| | | 1 | 2 | 3 | 4 | 5 | 6 | Total | | South House | | | | | | | | | Patio | 34 | 33 | 11 | 23 | 16 | 32 | 38 | | Property Line | 36 | 34 | 12 | 24 | 17 | 34 | 40 | | Southwest House | | | | | | | | | Patio | 35 | 29 | 9 | 27 | 17 | 33 | 39 | | Property Line | 36 | 29 | 10 | 28 | 18 | 35 | 41 | | East House | | | | | - | | | | Patio | 36 | 30 | 4 | 22 | 9 | 15 | 37 | | Property Line | 38 | 33 | 6 | 22 | 11 | 16 | 39 | | North House | | | | | | | | | Patio | 35 | 33 | . 1 | 29 | 19 | 16 | 38 | | Property Line | 41 | 37 | 5 | 30 | 19 | 20 | 43 | ^{*}Source 1 = East Sanctuary Wing Source 2 = West Sanctuary Wing Source 3 = Sanctuary Ground Source 4 = Hall Roof Well Source 5 = Hall Subroof Source 6 = Temporary Admin. Bldg. Interim Project (B)=New sanctuary, new hall, modular administration. ²With sanctuary HVAC roof screens. Table 5 Interim Project (C) Off-Site Mechanical Equipment Noise² | | Source Contribution (dBA) ¹ | | | | | | | | |-----------------|--|----|----|----|----|----|----|-------| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total | | South House | | | | | | | | | | Patio | 34 | 33 | 11 | 24 | 21 | 41 | 29 | 43 | | Property Line | 36 | 34 | 12 | 25 | 21 | 43 | 30 | 44 | | Southwest House | | | | | | | | | | Patio | 35 | 29 | 9 | 19 | 34 | 18 | 38 | 41 | | Property Line | 36 | 29 | 10 | 21 | 37 | 20 | 40 | 43 | | East House | | | | | | | | | | Patio | 36 | 30 | 4 | 16 | 16 | 14 | 13 | 37 | | Property Line | 38 | 33 | 6 | 17 | 18 | 16 | 13 | 39 | | North House | | | | | | | | | | Patio | 35 | 33 | 1 | 34 | 35 | 15 | 13 | 40 | | Property Line | 41 | 37 | 5 | 40 | 39 | 20 | 14 | 45 | ¹Source 1 = East Sanctuary Wing Source 2 = West Sanctuary Wing Source 3 = Sanctuary Ground Source 4 = Large temporary hall Source 5 = Portables 1 Source 6 = Portables 2 Source 7 = New Adminstration Bldg. ²With sanctuary HVAC roof screens and administration HVAC sound wall. Interim Project (C)=New sanctuary, modular hall, new administration. # CONSTRUCTION Project construction will create a noise from heavy equipment used for clearing, grading, excavation and building assembly. The noise level from equipment varies markedly, and a contractor has discretion in his and her selection of the equipment fleet to carry out the task. Any impact analysis is necessarily generic. Construction activity noise occurs in discrete phases in response to the general types of activities. In hard-rock environments, drilling, blasting, excavation, hauling and possible crushing may be required. In softer soils, dozing, scraping and grading may be used to establish suitable building pads, parking lots, and other hardscape improvements. Some construction requires driven piles for building stability in soft soils, but that will not be required for this project. The amount of hard rock that will be encountered is not fully known at this time. Rock processing through a crusher is the loudest semi-continuous activity. Crushing activity noise at 50 feet may be in the upper 80 dB range for the short term, and up to 85 dB over 8 hours at this distance. A setback of at least 160 feet from any off-site property line would be needed for rock crushing in order to maintain off-site noise levels at less than the County standard if extensive hard rock is encountered. Grading activities will require a dozer, grader, backhoe, compactor, and perhaps an excavator. Dozers have short-term noise levels in the upper 80 dB range, but they have markedly variable duty cycles and often do not operate in one location for an 8-hour day. The maximum noise impact results when loud semi-mobile noise sources such as cranes or excavators operate within a confined area for much of the workday. Measurements of limited mobility activity such as excavation, loading and hauling at one fixed site have shown levels near 79 dB(A) over 8 hours at 50 feet from the excavator. This was assumed as a worst-case condition because such equipment may operate close to air adjacent property line. Such a source would exceed the San Diego County standard for any properties within 80 feet of the activity. There will be construction activities closer than as 80 feet from the property line within proximity of adjacent homes to the south of the proposed new administration building and the new sanctuary building. Reduction of the property line equipment noise can be achieved by creating line of sight barriers to noise propagation, or by working less than eight hours close to the property line. Because of limited room between the construction area and the property line, time limits on equipment operations may be the most promising option. Equipment operating times that would achieve 75 dB(A) LEQ (8) for the assumed prototype are as follows: | Distance to P.L. (feet) | Allowed Hours | |-------------------------|---------------| | 20 | 0.5 | | 30 | 1.2 | | 40 | 2.0 | | 50 | 3.2 | | 60 | 4.6 | | 70 | 6.2 | | 80 | 8.0 | Time restrictions on equipment operations near the southern property line will maintain less-than-significant noise impacts at the nearest homes. Temporary barriers can sometimes be erected to allow for construction close to residences without exceeding the noise performance standard. Heavy-weight fabric-covered batts supported by steel or telephone poles and cables are used with good success. These materials have sound transmission class (STC) ratings of 30 or better, and are often used around oil drilling rigs within
populated areas. Depending upon source-receiver geometries, a barrier of 10 to 15 feet high would reduce noise by 10 dB or more. This would allow for semi-continuous construction with heavy equipment as close as 20 to 25 feet from adjacent property lines without exceeding the County noise performance standard. A construction noise mitigation plan will be developed and approved by the Director of Planning and Land Use when specific equipment is identified, and detailed construction procedures are adopted. This plan will be required for any extended heavy equipment operations (more than 10 days) within 80 feet of any project perimeter property line. Construction activities may adversely impact adjacent biotic habitats if noise-sensitive species are present during construction. This situation often occurs if gnatcatchers are nesting nearby during their breeding season. Gnatcatchers are not currently present. If they were found prior to construction, the following measure would/could be implemented: - 1. Schedule heavy equipment operations to non-breeding season times. Because no threatened or endangered bird species have been observed during all biological survey (REC, 2003), this potential impact is likely a non-issue for biology. If protected bird species should be present, seasonal avoidance will be practical unless there are compelling reasons to perform grading or other heavy-equipment intensive operations that cannot be rescheduled. If protected birds should somehow appear, and if avoidance is impossible, then the following measures would be implemented. - 2. Erect temporary barriers to interrupt the source-receiver line-of-sight. 3. Use smaller equipment operated intermittently. If a non-avoidance construction practice is selected, noise monitoring near the affected habitat by a biologist trained in bird observation and in noise measurement practice is typically required to confirm the absence of any impacts. 25 # MITIGATION SUMMARY - 1. Screen walls shall be constructed atop the sanctuary roof to shield the 38H034 units from northward noise propagation. The top of the walls as shown in Figure 2 shall be at 2,105 feet msl. A 2-inch gap at the bottom of each wall above the roof is allowed for drainage. The wall shall be constructed of 20-gauge sheet metal or acoustically equivalent material shown in Figure 2. - 2. A 4-foot-high concrete masonry wall shall be erected to a top-of-wall height of 2,082 feet near the Administration Building air conditioning units as shown in Figure 3. Wall material shall exceed a surface density of 4.0 pounds per square foot. - 3. The seven air conditioners for the interim fellowship hall shall be limited to 3.0 tons or less each, and shall be "Bard WH/WA" units or equivalent. - 4. A construction noise mitigation plan shall be submittal and approved for any heavy equipment operations anticipated to occur for more than ten (10) workdays within 80 feet of any off-site property line. - 5. If hard rock is encountered that requires crushing, the crusher shall maintain a set-back distance of at least 160 feet from any point to the nearest property line. - 6. A construction noise impact mitigation plan shall be developed and approved by appropriate wildlife management agencies if nesting gnatcatchers are found near the site prior to construction. QUUEN.DOC 26 # **APPENDIX** | 1. | SOUND32 | Traffic Noise | Computer Files | |----|---------|---------------|----------------| | 1. | SOUND32 | Traffic Noise | Computer Files | - 1a. West Victoria Traffic Noise SOUND 32 Model Input - 1b. West Victoria Traffic Noise SOUND 32 Model Output - 2. Mechanical Equipment Data Sheets - 2a. HVAC Equipment Spec. Sheet Transmittal* - 2b. Sanctuary Mechanical Equipment Layout - 2c. Admin. Building Equipment Layout - 2d. Hall Building Equipment Layout - 2e(1) Reznor Kitchen Hood Make-Up Air Fan Noise Data - 2e(2) Kitchen Hood Exhaust Fan - 2e(3) 38QRC Heat Pump Dimensional Data - 2e(4) 38QRC Heat Pump Noise Data - 2e(5) FB4A Fan Coil Unit Dimensional Data - 2e(6) FB4A Fan Coil Unit Noise Data - 2e(7) 50HS024 Package Heat Pump Unit Dimensional Data - 2e(8) 50HS024 Package Heat Pump Unit Noise Data - 2e(9) 50HJQ Package Heat Pump Unit Dimensional Data - 2e(10) 50HJQ004 Package Heat Pump Unit Noise Data - 2e(11) 50HJQ005 Package Heat Pump Unit Noise Data - 2e(12) 50HJQ006 Package Heat Pump Unit Noise Data - 2e(13) 50HJQ008 Package Heat Pump Unit Dim. Data - 2e(14) 50HJQ004 Package Heat Pump Unit Noise Data - 2e(15) 39M/Size 21 Air Handler Dimensional Data - 2e(16) 39M/Size 21 Air Handler Supply Fan Noise Data - 2e(17) 39M/Size 21 Air Handler Return Fan Noise Data - 2e(18) 38H034 Condensing Unit Dimensional Data - 2e(19) 38H034 Condensing Unit Noise Data - 3. Mechanical Equipment Noise Attenuation Calculations - 4. Modular Building HVAC Noise Ratings and Attenutation ^{*}With annotation as to number of units, location and reference ARI sound rating. ``` Queen of Angels I-West Victoria, 1 362, 50, 4, 50, 4, 50 1-Combined, 1 1,37.,0,0, 1,82.,189,0, 1,163.,392,0, 1,245.,498,0, 1,326.,596,0, 1,408.,694,0, 1,490.,752,0, 1,571.,792,0, 1,653.,812,0, 1,734.,832,0, 1,816.,849,0, 1, 1, 67,500 379,196,5., NewAdmin {, 2 , 67 ,500 169,294,5.,NewHall 1, 3, 67,500 '02,306,5.,Plaza l, 4 , 67 ,500 '75,310,5.,Church 1, 5 , 67 ,500 '02,204,5.,DevGardn l, 6 , 67 ,500 16,714,5.,House ``` :,C SOUND32 - RELEASE 07/30/91 TITLE: Queen of Angels # BASED ON FHWA-RD-108 AND CALIFORNIA REFERENCE ENERGY MEAN EMISSION LEVELS | RECEIVER | LEQ | |----------|------| | | | | NewAdmin | 56.6 | | NewHall | 56.3 | | Plaza | 53.6 | | Church | 52.9 | | DevGardn | 52.7 | | House | 58.5 | # **DIVISION 15 CONSULTING SERVICES** MECHANICAL/PLUMBING SYSTEMS DESIGN May 24, 2002 Mr. Dennis Hyndman Hyndman & Hyndman Architecture 2611 South Coast Hw'y 101, Suite 201 Cardiff, CA 92007 Re: Queen of Angels Catholic Church - Alpine Preliminary HVAC Equipment Sizing/Location # Dear Dennis: Please refer to the enclosed sketches for proposed HVAC equipment locations per the following schedule: # SANCTUARY BUILDING - 1. Carrier #38QRC024 Split System Heat Pump (outdoor section) - 2. Carrier #FB4A024 Split System Fan-Coil Unit - 3. Carrier #38H034 Split System Condensing Unit (outdoor section) - 4. Carrier #39M Size 21 Split System Air Handling unit - 5. Carrier #50HJQ005 Rooftop Package Heat Pump Unit - 6. Carrier #50HJQ006 Rooftop Package Heat Pump Unit # ADMIN. BUILDING - 1. Carrier #38QRC024 Split System Heat Pump (outdoor section) - 2. Carrier #FB4A024 Split System Fan-Coil Unit - 1. Carrier #38QRC036 Split System Heat Pump (outdoor section) - 2. Carrier #FB4A036 Split System Fan-Coil Unit - 3. Carrier #38QRC048 Split System Heat Pump (outdoor section) - 4. Carrier #FB4A048 Split System Fan-Coil Unit # HALL BUILDING - 1. Carrier #50HS024 Rooftop Package Heat Pump Unit - 2. Carrier #50HJQ004 Rooftop Package Heat Pump Unit - 3. Carrier #50HJQ005 Rooftop Package Heat Pump Unit - 4. Garrier #50HJQ006 Rooftop Package Heat Pump Unit- - 5. Carrier #50HJQ008 Rooftop Package Heat Pump Unit - 6. Reznor RPB Kitchen Hood Make-Up Air Unit - 7. Cook #VCR245-HP Rooftop (vertical discharge) Hood Exhaust Fan Manufacturers' sound data is also enclosed. This sound data is cataloged information. If additional sound data is needed please have your Acoustic Engineer call me at 619-670-3587. Regards, Tom Green, Principal TFG/ks ound Data ime/Date: 4/3/01 2:25:48 PM ersion 4.1.0 odel: A12-12A AN NOISE CALCULATION (dBA) -, 4000 CFM,) ft elevation, 70 deg F, .075 lb/ft^3 density - Standard | , | u , | | , | | | LHI | رساسا۲ |) | | |------------------|------------|----|-----|-----|-----|------|--------|------|------| | CTAVE BAND No. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ā | | CT.CENTRE FRQC | Y (H±) | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | | PECIFIC SWL (dB) | 39 | 44 | 39 | 36 | 39 | 37 | 32 | 31 | | | DLOG Q+20LOG TF | (dB) 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | | | FI (dB) | 0 | Ø | O | 0 | 2 | O | Ø | ø | | | PF-PEAK CORR. | (dB) | 7 | 1 | 1 | 1 | . 1 | 1 | 1 | 1 | | OTAL FAN SWL | (dB) | 85 | 90 | 85 | 82 | 57 | 83 | 78 | 77 | [.] The A-weighted SWL in-duct is 90 dB. . At a distance of 40 ft. from the fan, 73 dBA can be expected with an open injet or outlet, and 58 dBA when the injet and outlet are ducted. Those values have been accessed using a model of sound propagation from a point source into the hemispheric free field (see AMCA 303-79). THE GRA VALUES PROVIDED ARE TO BE USED FOR REFERENCE ONLY, CALCULATION OF dBA VALUES COVER MATTERS OF SYSTEM DESIGN AND THE FAN MANUFACTURER HAS NO WAY OF KNOWING THE DETAILS OF EACH SYSTEM, THIS CONSTITUTES AN EXCEPTION TO ANY SPECIFICATION OR GUARANTEE REQUIRING A HEA VALUE OR SOUND DATA IN ANY OTHER FORM THAN SOUND POWER LEVEL RATINGS (SWL). . The off-peak correction has been based on a static efficiency ratio of 0.904 (54 % / 60 %) Sound generated by blower neise only a std air Richard J. Blash C-VCR-HP 245 SOUND DATA | | | | | 901 | ים חעו | WED - | e 10-12 | WATTO | | | |-------|------------|-------------|-----|----------|--------|-------|---------|-------|----------|------| | RP | ı SP | - | | 301 | | TAVE | | HALIS | | | | 1,,,, | " " | 1 | 1 2 | 3 | 1 4 | 5 | 6 | 7 | 1 8 | LwiA | | - | .25 | _ | | 85 | | | 74 | 70 | 63 | 82 | | 970 | | | | 83 | _ | 73 | 72 | 68 | 62 | 81 | | | 1.2 | 5 81 | 85 | 81 | 75 | 71 | 70 | 66 | 61 | 79 | | | .25 | 85 | 88 | 85 | 80 | 75 | 75 | 71 | 64 | 83 | | 995 | .75 | 83 | 87 | 84 | 78 | 74 | 73 | 69 | 63 | 82 | | 1 | 1.25 | 82 | 86 | 82 | 76 | 72 | 71 | 67 | 62 | 79 | | | .25 | 85 | 89 | 86 | 81 | 77 | 76 | 72 | 65 | 84 | | | .75 | 83 | 88 | 86 | 80 | 75 | 74 | 70 | 64 | 83 | | 1035 | 1.25 | 83 | 87 | 84 | 78 | 73 | 72 | 68 | 63 | 81 | | | 1.75 | 82 | 85 | 81 | 76 | 71 | 70 | 67 | 63 | 79 | | | .25 | 86 | 89 | 87 | 82 | 77 | 76 | 73 | 66 | 85 | | 1000 | .75 | 84 | 88 | 86 | 81 | 76 | 75 | 71 | 65 | 84 | | 1060 | 1.25 | 83 | 87 | 84 | 79 | 74 | 73 | 69 | 64 | 82 | | | 1.75 | 83 |
86 | 83 | 77 | 72 | 71 | 68 | 63 | 80 | | | .25 | 86 | 90 | 88 | 83 | 78 | 77 | 74 | 67 | 86 | | 1090 | .75 | 85 | 89 | 87 | 82 | 77 | 75 | 72 | 66 | 85 | | 1090 | 1.25 | 84 | 88 | 86 | 80 | 75 | 73 | 70 | 65 | 83 | | | 1.75 | 83 | 86 | 84 | 78 | 73 | 72 | 69 | 64 | 81 | | | .25 | 87 | 90 | 88 | 83 | 79 | 77 | 74 | 68 | 86 | | 1115 | .75 | 85 | 89 | 88 | 82 | 78 | 76 | 73 | 67 、 | 85 | | 1113 | 1.25 | 84 | 88 | 86 | 81 | 76 | 74 | 71 | 66 | 84 | | | 1.75 | 84 | 87 | 85 | 79 | 74 | 72 | 70 | 65 | 82 | | | .25 | 87 | 90 | 89 | 84 | 79 | 78 | 75 | 69 | 87 | | 1150 | .75 | 86 | 90 | 89 | 83 | 79 | 77 | 74 | 68 | 86 | | 1130 | 1.25 | 85 | 89 | 88 | 82 | 77 | 75 | 72 | 67 | 85 | | | 1.75 | 84 | 88 | 86 | 80 | 75 | 73 | 71 | 66 | 83 | | | .25 | 88 | 91 | 90 | 85 | 80 | 79 | 76 | 70 | 88 | | | .75 | 86 | 90 | 90 | 84 | 79 | 77 | 74 | 68 | 87 | | | | 250 | 00 | | 100 | | Sept of | 1 | | | | | | 85 | 88 | 87 | 81 | 76 | 74 | 71 | 67 | 84. | | • | 2.25 | - | 87 | 85. | 80 | 75 | 73 | 70 | 66 | 200 | | | .25 | 88 | 91 | 91 | 86 | 81 | 79 | 77 | 70 | 88 | | | .75 | 87 | 91 | 90 | 85 | 80 | 78 | 75 | 69 | 88 | | 1205 | 1.25 | 86 | 90 | 89 | 84 | 79 | 77 | 74 | 68 | 86 | | | 1.75 | 85 | 89 | 88 | 82 | 77 | 74 | 71 | 67 | 84 | | | 2.25 | 85
89 | 92 | 86
91 | 86 | 81 | _B0 | 77 | 71 | 89 | | | .25
.75 | 87 | 91 | 91 | 86 | 81 | 79 | 76 | 70 | 88 | | 1230 | 1.25 | 86 | 90 | 90 | 84 | 79 | 77 | 74 | 69 | 87 | | 1230 | 1.75 | 86 | 89 | 89 | 83 | 78 | 76 | 73 | 68 | 86 | | | 2.25 | 85 | 88 | 87 | 82 | 76 | 74 | 72 | 68 | 84 | | | .25 | 89 | 92 | 92 | 87 | 82 | 80 | 78 | 72 | 89 | | - | | | | | | | | 76 | 71 | 89 | | 1055 | .75 | 88 | 91 | 91 | 86 | 81 | 79 | | | | | 1250 | 1.25 | 87 | 91 | 91 | 85 | 80 | 78 | 75 | 70
69 | 88 | | | 1.75 | 86 | 90 | 89 | 84 | 78 | 76 | 74 | | | | - 1 | 2.25 | 86 | 89 | 88 | 82 | 77 | 75 | 73 | 68 | 85 | .25 ## Model number nomenclature (cont) ### SYSTEM AND COMPONENT AVAILABILITY | SYSTEM | | | | . s | IZE in in | i : | | | |--------------|-----|-----|-----|-----|-----------|-----|-----|-----| | OR COMPONENT | 009 | 012 | 018 | 024 | 030 | 036 | 048 | 060 | | 53QNE | X | X | X | X | | | | | | 53QAE | | | X. | X | X† | X | X | X | | 53QKE : | | | X. | X† | X† | x | | | | 38BK · : | X | X | X | X | | | | | | 38QR-C | | | X | X | X | X | X | X | | 40QNE | X | X | X | X | | | | | | 40QAE | ` . | | | X | | X | Χ. | X | | 40QKE | | | | Х | | Х | X | | ^{*}Uses an 024 size indoor unit. NOTE: See Systems Index Index table, page 26 for a complete list of systems including components used for each. ## **ARI*** capacities | | • | | | | | | - | | | | | 110 | ハノ | | |------------------------|------------------------|-------------------|------------------------------------|------------------------|--------------------------|-------|--------|------|--------|---------------------|----------------------|--------|-----------|--| | SYSTEM
MODEL
NO. | FAN
COIL
TYPE | INDOOR
SECTION | OUTDOOR
SECTION. | STANDARD
·· CFI ··. | NET
COOLING
(BTUH) | TOTAL | SEER | | (BTUH) | HIGH
HEAT
COP | HIGH
HEAT
HSPF | (BTUH) | | OUTDOOR
SOUND
RATING
(Decibels) | | 53QNE009 | High Wall | 400 NE009 | 38BK009 | 262 | . 8,700 | 0.95 | 10.0 | 9.2 | 9,000 | 3.20 | 6.80 | 5,120 | 2.2 | 65 | | 53QNE012 | High Wall | 40 QNE012 | 38BK012 | 302: | 12,500 | 1.28 | 10.5 | 9.8 | 12,500 | 3.00 | 6.80 | 7,190 | 2.3 | 65 | | 53QNE018 | High Wall | 400NE018 | 38BK018 | 455 | 17,300 | 1.71 | 11.5 | 10.1 | 16,900 | 2.85 | 6.80 | 10,100 | 2.05 | 68 | | 53QNE024 | High Wali | 40QN E024 | 38BK024 | 525 | 23,200 | 2.23 | 11.0 | 10.4 | 21,400 | 2.90 | 6.80 | 12,700 | 2.20 | 68 | | 520AE018 | Ceiling | .400 AE024 | 3000 0070 | | TOO | 7.00 | - | 10:0 | 47,000 | 0.20 | -02-Eur | -0,000 | - | - | | 53QAE024 | Ceiling | 40° E024 | 38QR-C024 | 5/5 | 24,000 | 2.40 | 11.00 | 10.0 | 22,600 | 3.00 | 7.30 | 12,500 | 2.0 | 68 | | 53QAE030 | Ceiling | 40QA E036 | 3800 C02 | 670 | -00,000 | -0.0 | 11.00 | 10.2 | 28,000 | 2.30 | 7.40 | 15 600 | - Eigen | -00 | | - FOO 1-844 | Suspended | .400.036 | '38QR-C036
Single-Phase
Unit | 870 | 34,600 | 3.39 | 11.50 | 10.2 | 33,000 | 3.30 | 7.15 | 19,000 | 2.2 | 68 | | 53 Q.4.50 88 | Coili Suspended | EUSC | 380R-C036
3.Rhece
Unit | 270 | 26,000 | 2.0 | | 9.8 | 34,400 | 3.00 | 0.00 | 15,000 | 2.0 | | | 53QAE048 | Ceiling | VAE048 | 38QR-C048 | 100 | 48,000 | 5.00 | 10.20 | 9.6 | 45,500 | 3.20 | 7.30 | 28,200 | 2.2 | 76 | | 520 A E00 | Ceiling
easpend | ADGAEDO | 280P.0 | | 50,000 | F-05 | 11.00 | 9.9 | 57.500 | J. T. | 1:10-4 | 0E;00 | 20 mg | | | 53QKE018 | In-Ceiling
Cassette | 44 QKE024 | 30QR-C018 | 525 | 18,000 | 2.00 | 10.00 | 9.0 | 17,600 | 3.04 | 6.80 | 11,000 | 2.0 | 68 | | 53QKE024 | In-Ceiling
Cassette | 400KE036 | 38QR-C024 | 980 : | 25,000 | 2.44 | .10,70 | 10.2 | 23,800 | 3.34 | 7.60 | 13,400 | 2.3 | 68 | | 53QKE030 | In-Ceiling
Cassette | 400KE036 | 38QR-C030 | 980 | 29,000.:- | 2.61 | 11.50 | 11.1 | 27,000 | 3.27 | 7.60 | 15,900 | 2.3 | 68 | | 53QKE036 | In-Ceiling
Cassette | 40CXE048 | 38QR-C036
Single-Phase
Unil | 1100 , | 33,000 | 3.47 | 10.50 | 9.5 | 33,000 | 3.30 | 6.80 | 20,000 | 2.2 | 70 | | 530KE036 | In-Ceiling
Cassette | 400 E048 | 38QR-C036
3-Phase
Unit | 1100 | 34,400 | 3.65 | 10.00 | 9.2 | 34,000 | 3.00 | 6.80 | 21,000 | 2.0 | 74 | LEGEND Coefficient of Performance Dry-Bulb Energy Efficiency Ratio ' Heating Seasonal Performance Factor Seasonal Energy Efficiency Ratio Wet-Bulb HSPF SEER ARI 210/240 ARI 270 (When used with matching unit.) *Air Conditioning & Refrigeration Institute. NOTES: [†]Uses an 036 size indoor unit. "Uses an 048 size indoor unit. NOTES: 1. Ratings are net values reflecting the effects of circulating fan heat. Supplemental electric heat is not included. Ratings are based on: Cooling Standard: 80 F db, 67 F wb indoor entering air temperature and 95 F db air entering outdoor unit. High-Temperature Heating Standard: 70 F db indoor entering air temperature and 47 F db, 43 F wb air entering outdoor unit. Low-Temperature Heating Standard: 70 F db indoor entering air temperature and 17 F db, 15 F wb air entering outdoor unit. 2. Ratings are based on 15 ft of interconnecting refrigerant line. 3. The total kW is for the total system, including compressor and indoor and outdoor fans. Dimensions COIL UNITS FRONT VIEW SHOWN WITH *A* COIL DETAILS CONNECTION LOCATIONS OR UPFLOW OR HORIZ APPLICATIONS INLET AIR TOP VIEW 7/6", 1 3/22", 2" DIA KNOCKOUTS FOR HIGH VOLTAGE POWER WIRING 13% 63/16 CONNECTION 411/16 COIL ACCESS PANEL BLOWER, CONTROL & ELECTRIC HEATER ACCESS PANEL DISCONNECT OR CIRCUIT BREAKER LOCATION PANEL SLOPE COIL DETAILS ACCESS PANEL CONNIG FOR SLOPE COILS CONNECTION LOCATIONS DOWNFLOW OR HORIZ SHOWN FOR UPFLOW OR HORIZ LEFT APPLICATIONS DOWNFLOW APPLICATIONS OWN FLOW APPLICATIONS OWN FLOW APPLICATIONS UNIT REFRIGERANT CONNECTION SIZES SUCTION: 018, 024 - 58' ID SWEAT, 030, 035; -38' ID SWEAT, 042-070; -76' ID SWEAT NOTE: Allow 21 In. from front for service. 76" DIA KNOCKOUT FOR LOW VOLTAGE CONTROL WIRING -INLET AIR 11/16 11/2 RIGHT SIDE VIEW 19 13/16 OPENING INLET AIR TERNATE 76". OUTLET AIR OPTIONAL FIELD CONVERTED RIGHT SIDE RETURN OPENING (SLOPE COIL UNITS ONLY) H FOR MODULAR UNITS 4 A98326 | SE UNITED STATES | COL | | , | α | | O | | 9 | | | | | | | | |--|---
---	---	---	---	---
--	--	--	--	
licable for modular	units only	6 40	V+V	To4A, and
(42.8) ACCESSORY RECTANGULAR OUCT CONNECTION KIT O SUPPLY RETURN REAR VIEW WITH ACY DUC'T CONNECTION KIT -18 3/8° (466.7) (281,0) INDOOR COIL ACCESS PANEL COMPRESSOR ACCESS PANEL (Carrier) 0 Q 4.5/8 3/4" NPT (19.0) BLOWER, CONTROL BOX ACCESS PANEL (SEE NOTE 1) 2 3/16 (SS.6) DRAIN OUTLET 1 3/8 (34.9) LEFT SIDE VIEW FRONT VIEW RIGHT SIDE VIEW ### ARI capacities ### COOLING AND HEATING CAPACITIES AND EFFICIENCIES	. •	UNIT 50HS	NOMINAĽ TONS	STANDARD CFM
80.0 °F		Evaporator Entering Air WB	67.0 °F	
7.0(7.5		Acoustic Data;		----------------
24,000	24,000	23,000	23,000	30,000
built-in at the factory or field installed as an option. (See Form F1403 for complete performance and application details. Manufactured under U.S. Patent Nos. 5,485,878; 5,301,744; 5,002,116; 4,924,934; 4,875,520; 4,825,936; 4,432,409. ### Commercial Room Ventilator Performance Data - CRV-2				0.00
			Hìgh Speed	
2429	٥	1530	1530	٥
950	95	0	12352	9720
WVL WHR WVL 2430 1944 2025 1640 1620 4860 3888 4050 3280 3240 7290 5832 6075 4920 4860 9720 7776 8100 6561 6480 12150 9720 10125 8201 8100	450 CFM 375 CFM 300 CFM WVL WHR WVL WHR WVL 2430 1944 2025 1640 1620 2480 3888 4050 3280 3240 7290 5832 6075 4920 4860 9720 7776 8100 6561 6480 12150 9720 10125 8201 8100 14580 11664 12150 9841 9720	450 CFM 375 CFM 300 CF WVL WHR WVL WHR WVL 2430 1944 2025 1640 1620 4860 3888 4050 3280 4860 7290 5832 6075 4920 4860 9720 7776 8100 6561 6480 12150 9720 10125 8201 8100 14580 11664 12150 9841 9720 17010 13608 14175 11481 11340	450 CFM 375 CFM 300 CF WVL WHR WVL WHR WVL 2430 1944 2025 1640 1620 2486 3888 4050 3240 3240 7290 5832 6075 4950 4860 9720 7776 8100 6561 6480 12150 9720 10125 8201 8100 14580 11664 12150 9841 9720 17010 13608 14175 11481 11340 19440 15552 16200 13122 12960	450 CFM 375 CFM 300 CF WVL WHR WVL WHR WVL 2430 1944 2025 1640 1620 2430 1944 2025 1640 1620 4860 3888 4050 3280 3240 7290 5832 6075 4920 4860 9720 7776 8100 6561 6480 12150 9720 10125 8201 8100 14580 11664 12150 9841 1370 17010 13608 14175 11481 11340 19440 15552 16200 13122 12960 21870 17496 18225 14762 14580
1525/1375				
33,800	32,300	30,900		
WA42 WA48 WA60	42.075	22.432	84.875	9.88
 130.38 | 0.22 | 8 | | 2 | 210.40 | 10.44 | 200.25 | 0.28 | 9 | | 4 | 250.01 | 21.19 | 230.05 | 1.20 | 13 | | 5 | 320.45 | 10.44 | 310.32 | 0.30 | 9 | ### Noise Exposure Analysis (dBA Leq): #### SOUTH HOUSE PATIO | Source
No. | Ref. LVL | Distance
Reduction | Barrier
Reduction | Residual
Level | |---------------|----------|-----------------------|----------------------|-------------------| | 1 | 95 | 46 | 15* | 34 | | 2 | 95 | 47 | 15* | 33 | | 3 | 68 | 38 | 19 | 11 | | 4 | 89 | 50 | 16 | 23 | | 5 | 76 | 48 | 12 | 16 | | 6 | 80 | 51 | 0 | 29 | | | | | TOTAL | 37 | ^{*}Assume 15 dB for sanctuary roof intercept. #### SOUTH HOUSE P.L. | Source
No. | Ref. LVL | Distance
Reduction | Barrier
Reduction | Residual
Level | |---------------|----------|--|----------------------|-------------------| | 1 | 95 | 44 | 15* | 36 | | 2 | 95 | 46 | 15* | 34 | | 3 | 68 | 34 | 22 | 12 | | 4 | 89 | 49 | 16 | 24 | | 5 | 76 | 47 | 12 | 17 | | 6 | 80 | 50 | 0 | 30 | | | | 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | TOTAL | 39 | ^{*}Assume 15 dB for sanctuary roof intercept. ### Southwest House Patio | Source
No. | Ref. LVL | Distance
Reduction | Barrier
Reduction | Residual
Level | |---------------|----------|-----------------------|----------------------|-------------------| | 1 | 95 | 49 | 11 | 35 | | 2 | 95 | 51 | 15* | 29 | | 3 | 68 | 49 | 10 | 9 | | 4 | 89 | 45 | 17 | 27 | | 5 | 76 | 47 | 12 | 17 | | 6 | 80 | 37 | 0 | 43 | | | | | TOTAL | 44 | ^{*}Assume 15 dB for sanctuary roof intercept. #### Southwest House P.L. | Source
No. | Ref. LVL | Distance
Reduction | Barrier
Reduction | Residual
Level | |---------------|----------|-----------------------|----------------------|-------------------| | 1 | 95 | 49 | 10 | 36 | | 2 | 95 | 51 | 15* | 29 | | 3 | 68 | 49 | 9 | 10 | | 4 | 89 | 44 | 17 | 28 | | 5 | 76 | 46 | 12 | 18 | | 6 | 80 | 35 | 0 | 45 | | | | | TOTAL | 46 | ^{*}Assume 15 dB for sanctuary roof intercept. # EAST HOUSE PATIO | Source
No. | Ref. LVL | Distance
Reduction | Barrier
Reduction | Residual
Level | |---------------|----------|-----------------------|----------------------|-------------------| | 1 | 95 | 48 | 11 | 36 | | 2 | 95 | 50 | 15* | 30 | | 3 | 68 | 49 | 15* | 4 | | 4 | 89 | 52 | 15* | 22 | | 5 | 76 | 52 | 15* | 9 | | 6 | 80 | 52 | 15* | 13 | | | | | TOTAL | 37 | ^{*}Assume 15 dB for sanctuary roof intercept. #### EAST HOUSE P.L. | Source
No. | Ref. LVL | Distance
Reduction | Barrier
Reduction | Residual
Level | |---------------|----------|------------------------------------|----------------------|-------------------| | 1 | 95 | 44 | 13 | 38 | | 2 | 95 | 47 | 15 | 33 | | 3 | 68 | 47 | 15* | 6 | | 4 | 89 | 52 | 15* | 22 | | 5 | 76 | 50 | 15* | 11 | | 6 | 80 | 52 | 15* | 13 | | | | Marine Carlot Marine Anna American | TOTAL | 39 | ^{*}Assume 15 dB for sanctuary roof intercept. ### NORTH HOUSE PATIO | Source
No. | Ref. LVL | Distance
Reduction | Barrier
Reduction | Residual
Level | |---------------|----------|-----------------------|----------------------|-------------------| | 1 | 95 | 48 | 7 | 40 | | 2 | 95 | 49 | 8 | 38 | | 3 | 68 | 52 | 15* | 1 | | 4 | 89 | 50 | 10 | 29 | | 5 | 76 | 49 | 8 | 19 | | 6 | 80 | 52 | 15* | 13 | | | | | TOTAL | 42 | ^{*}Assume 15 dB for sanctuary roof intercept. #### NORTH HOUSE P.L. | Source
No. | Ref. LVL | Distance
Reduction | Barrier
Reduction | Residual
Level | |---------------|----------|-----------------------|----------------------|-------------------| | 1 | 95 | 41 | 8 | 46 | | 2 | 95 | 44 | 9 | 42 | | 3 | 68 | 48 | 15* | 5 | | 4 | 89 | 46 | 13 | 30 | | 5 | 76 | 48 | 9 | 19 | | 6 | 80 | 51 | 15* | 14 | | | | | TOTAL | 48 | ^{*}Assume 15 dB for sanctuary roof intercept. Source - Receiver Distances | Source | A | В | C | D | |----------------------|------|------------------|------|------| | Reference Level (dB) | (53) | (51) | (51) | (53) | | Patio North | 440 | 330 | 530 | 610 | | P/L North | 215ª | 200 ^b | 310 | 375 | | Patio East | 640 | 500 | 620 | 725 | | P/L East | 530 | 400 | 520 | 620 | | Patio SW | 460 | 350 | 380 | 480 | | P/L SW | 370 | 260 | 310 | 400 | | Patio South | 250 | 290 | 150 | 100 | | P/L South | 220 | 270 | 125 | 75 | Source: A=Interim Fellowship Hall B=North Portables C=South Portables D=Interim Administration Building Shaded Values are structurally shielded. A:\Quuen.doc 13 ^aAt point of clear line-of-sight ^bAt point of cumulative impact with Source A.